Espacio publicitario

POOL9 h.
298,87 €/MWh -0,17%

WEPOWER
0,0040 $ -1,00%

SOLARPACK
9,90 $ 0,00

LITIO
92,06 $ 0,00

Gases renovables: biogás e hidrógeno verde

10-11-21. FEGECA
miércoles, 10 noviembre 2021. FEGECA
Gases renovables: biogás e hidrógeno verde
¿Es posible contar con un gas alternativo al gas natural y que produzca bajas emisiones y pueda ser considerado como fuente renovable de energía? Sí, efectivamente existe, pero antes haremos un recorrido por estos tipos de gases llamados renovables.

Los gases a los que podemos añadir el apellido de renovables, es decir, proveniente de fuentes inagotables de energía, en contrapunto con los gases combustibles fósiles, son: biogás, hidrógeno verde y gas natural sintético GNS.

Son combustibles que sólo con el hecho de ser gases, tienen la gran ventaja de emitir menores cantidades de CO2 a la atmósfera, incluso, en el caso del Hidrógeno, la emisión de CO2 es nula, frente a combustibles sólidos o líquidos.

Además, por ser combustibles, tienen la propiedad inherente de poder utilizarlos en un proceso de combustión obteniendo una gran cantidad de energía en el tiempo reducido de su combustión que no es posible igualar por cualquier otro tipo de energía renovable (aerotermia, solar térmica o fotovoltaica) que siempre necesitan un sistema de acumulación de energía por su reducida potencia de generación en el tiempo.

Otra ventaja de seguir utilizando gases combustibles, como apuntamos anteriormente, es poder seguir usando la infraestructura del gas natural que tenemos en nuestro país para suministro, no sólo al sector industrial y terciario y a viviendas, también para el abastecimiento a la red de producción de energía eléctrica nacional, configurada en su gran mayoría en términos de potencia generada (según datos de 2019 y 2020) en centrales de ciclo combinado.

Y qué mejor ventaja el poder seguir utilizando un gas combustible y que además sea renovable sin un replanteamiento y nuevo dimensionado de nuestras actuales instalaciones térmicas que suponga para sus propietarios grandes inversiones que, justo en estos momentos actuales postpandemia, puedan suponer una carga económica inasumible para empresas y usuarios de viviendas en general.

En el Plan Estratégico Nacional Integrado de Energía y Clima (PENIEC) nos comprometemos, en un horizonte situado en el 2030, a unas reducciones de emisiones de gases que provocan efecto invernadero del 23%. También se fija en un 74% la generación de energía eléctrica proveniente de fuentes renovables y en un 100% para el 2050, y, por último, un compromiso de mejora de rendimientos energéticos de hasta un 39,5%.

Plan Estratégico Nacional Integrado de Energía y Clima

El objetivo del PENIEC es descarbonizar, pero ya contempla que no sólo electrificando es posible cumplir con los compromisos anteriores. Tanto el PENIEC como la Hoja de Ruta del Hidrógeno plantean descarbonizar también el vector del gas, aprovechar las infraestructuras gasistas, descentralizar la producción de gases renovables y terminar con la dependencia energética del exterior. De esta forma, el PNIEC contempla estos tipos de gases renovables para la producción de electricidad y sistemas de calefacción.

Así establece que:

  • Los gases renovables biogás, hidrógeno y gas natural sintético GNS, son la mejor integración sectorial entre el sistema eléctrico y la red de gas existentes.
  • Los gases renovables son relativamente fáciles de almacenar y son más flexibles que la energía eólica o solar, ya que pueden producirse en diferentes cantidades y en diferentes períodos de tiempo para una aplicación y utilización inmediata cuando se vierten a la red de gas o se queman en una central de ciclo combinado para producir energía eléctrica.
  • La producción de gas renovable implica el uso de la infraestructura de gas natural existente y al mismo tiempo es más ecológica que la del gas convencional.
  • Además, tanto el H2 como el CH4 son combustibles alternativos también para la movilidad o como materia prima en la industria química, plantas de acero y las refinerías de combustible.

Biogás FUENTE: Soluciones Integrales de Combustión

El Biogás inyectado en las redes de gas natural

Como gas renovable también se reconoce al aprovechamiento del bio metano que no proviene de combustibles fósiles. Aun produciendo CO2 en su combustión, es cierto que es una producción en un ciclo corto del carbón.

El biogás, procede de la digestión anaeróbica (falta de O2) de residuos orgánicos (residuos municipales y depuradoras, agrícolas y ganaderos, industria agroalimentaria…). En muchos casos su aprovechamiento ha cerrado el ciclo de vida de los residuos urbanos que se generan en una gran ciudad para poder producir combustible nuevamente inyectado en las redes de transporte de energía gasística y ser consumido en la misma ciudad, funcionando a modo de isla sin dependencia energética del exterior o de un tercero externo a la isla.

A nivel social, el aprovechamiento de los residuos orgánicos en un entorno rural permite fijar la población es estas áreas “vaciadas” ayudando a sus economías domésticas en cuanto a producción de un producto más que suministrar a las grandes ciudades, en este caso un combustible renovable, biogás.

Tabla de características de gas biometano apto para su inyección en las redes de gas natural:

Tabla de características del Biometano

El biometano: es biogás depurado que puede ser inyectado en redes de gas natural. Se elimina previamente el exceso de CO2 (proceso de enriquecido o upgrading). La disposición 14557 del BOE núm. 256 de octubre de 2018 fija los requerimientos en % en volumen.

El biometano

Además, para la inyección de biogás en redes de transporte, el contenido máximo de O2 será de 0,3% y para su inyección en redes de distribución el contenido máximo de O2 será del 1%.

En el caso de biometano, todos los equipos están preparados para funcionar con inyecciones de este gas, que están limitadas a un 90%. Siempre debe de cumplir el biometano lo marcado en la normativa para poder ser comparado con gas natural y utilizado en su lugar. En el caso del Hidrógeno su densidad y poderes caloríficos son muy diferentes al gas natural, pero el biometano es realmente un tipo de gas natural (CH4) que requiere menos modificaciones en la actual infraestructura de gas natural.

Todo el parque de equipos instalados y los equipos que se vayan a instalar en el futuro, podrán trabajar con biometano siempre que éste cumpla con los requisitos de composiciones mínimas que establece la disposición 14557 del BOE núm. 256 de octubre de 2018 que fija la composición del biometano para poder distribuirlo.

Actualmente tenemos un borrador de la Hoja de Ruta del Biogás con dos grandes vías de aplicación:

  1. Producción de electricidad.
  2. Producción de calor útil: en industria y producciónde biometano para sustitución del gas natural fósil.

Estas aplicaciones se materializan en 5 líneas de actuación:

  1. Regulación. Incluyen las garantías de origen, agilización y homogeneización de los procedimientos administrativos y mejora de la normativa sobre residuos, para facilitar la obtención del gas renovable.
  2. Actuación Sectorial. El establecimiento de objetivos anuales en la venta o consumo de biogás, con cuotas de obligado cumplimiento; junto con medidas para promover o bien el consumo in situ, en flotas de vehículos, en usos térmicos o en la producción de hidrógeno, o bien la sustitución del gas fósil.
  3. Económicas. Mejorar el tratamiento fiscal y establecer ayudas condicionadas a cumplir requisitos de reducción de CO2.
  4. Actuación transversal. Buscan priorizar los proyectos de biogás, crear comunidades energéticas y grupos de trabajo para facilitar su implantación.
  5. Impulso de la I+D+I. Fomentar la investigación para reducir las emisiones de gases contaminantes.

Futuro y previsiones sobre el biogás y biometano

  • Gracias a la aplicación de estas medidas, la Hoja de Ruta estima que la producción de biogás en 2030 puede multiplicar por 3,8 la registrada el año 2020 hasta superar los 10,4 TWh.
  • El 45% de la producción de biogás en 2030 se consumiría directamente, en usos térmicos o eléctricos, sobre todo en la industria, mientras que el restante 55% se transformaría en biometano para su uso en movilidad pesada, por ejemplo, en flotas municipales de limpieza o recogida de residuos  o se podría inyectar en la red si es rentable económicamente hacerlo: alrededor del 1% del gas que se consuma en 2030 por esta vía debería tener origen renovable, desplazando con ello el gas de origen fósil.
  • El uso en el transporte, por otro lado, facilitará cumplir el objetivo del PNIEC de alcanzar una cuota de energía renovable del 28% en 2030.
  • En cuanto a las emisiones de efecto invernadero, la consecución del objetivo planteado en la Hoja de Ruta para 2030 permitirá alcanzar una reducción notable: 2,1 millones de toneladas de CO2 equivalente cada año. Asimismo, la producción de biogás contribuirá a evitar las fugas de metano a la atmósfera, un gas que presenta un potencial de efecto invernadero muy superior al del CO2.

El hidrógeno, el gas renovable del futuro

Tras la publicación de la Hoja de Ruta del Hidrógeno se hace necesario valorar si también para el sector residencial sería apta la explotación y aplicación del hidrógeno como combustible renovable y si los fabricantes de equipos generadores de calor para calefactar la vivienda o producir a.c.s. también están preparados con equipos de alto rendimiento y sin emisiones de CO2.

Los fabricantes de equipos llevan años investigando el papel del hidrógeno en el proceso de descarbonización del mercado de calefacción, así como el funcionamiento de la caldera de hidrógeno para edificios residenciales y la aplicación del hidrógeno en el área comercial e industrial.

Quizá sea la molécula del hidrógeno la más simple que nos encontramos en la naturaleza, y la más pequeña, pero con un potencial de producción de energía enorme. Su combustión produce únicamente vapor de agua (0 emisiones de CO2) y comparado con el Gas Natural al que aspira a sustituir tiene ventajas y diferencias importantes:

  • Es mucho más ligero que el gas natural, ya que posee una menor densidad en estado gaseoso por el tamaño de su molécula.
  • Podríamos pensar en licuar el hidrógeno para su transporte, pero, si se licúa, el H2 incrementa un 12% de energía a sumar a la consumida, que no sería viable. Tenemos la necesidad de elevar sus presiones de suministro.
  • Asimismo, es interesante considerar que, para obtener la misma energía en el punto de consumo, debemos transportar y almacenar tres veces más de gas, por lo tanto, necesitamos mayores consumos y paso de gas por la actual infraestructura gasística.
  • El hidrógeno es un gas que no se encuentra en la naturaleza, debe producirse, consumiendo energía y en algunos casos emisiones de CO2. Su coste de obtención está, hoy por hoy, muy por encima el coste de obtención del gas natural, por esta razón no se ha implantado como alternativa al gas natural.

Características del Hidrógeno

A nivel industrial o de producción del gas hidrógeno nos encontraremos básicamente tres tipos de hidrógeno como combustible:

a)    Hidrógeno gris: a partir de combustibles fósiles obtenido a partir de metano y vapor de agua, pero con producción de CO2 en su elaboración. Es el 96% de la producción mundial de H2.

b)    Hidrógeno azul: es el mismo proceso de obtención anterior pero cuando se captura las emisiones producidas de CO2.

c)    Hidrógeno verde: procedente de la electrolisis del H2O, con consumos eléctricos elevados (2,83 kWh para 1 m3 de H2 que puede liberar 2,99 kWh de energía). Éste es el punto débil del hidrógeno actualmente, y por lo que se están estudiando nuevos métodos en la reducción del consumo eléctrico en la producción de H2 para poder hacerle competitivo en costes y verdaderamente sea el sustituto del actual gas natural.

Sin embargo, las aplicaciones del Hidrógeno Verde las tenemos ya presentes y en muchos casos son funcionales:

-    El hidrógeno se configura como único combustible utilizado en el vehículo eléctrico con pila de combustible como camiones y buques, donde el motor eléctrico con baterías no llega.

-    Base también de pilas de combustible dedicadas al sector residencial para la producción de electricidad y aprovechar el calor residual para calefacción y preparación de a.c.s., constituyendo un equipo de cogeneración renovable.

-    El H2 es la base del gas natural sintético y de algunos biocombustibles.

-    Sustituto de combustibles que se consumen en la industria sin necesidad de almacenamiento (gas natural conducido por la red de gaseoductos).

-    Aprovechamiento de infraestructuras existentes de gas natural: se trabaja a más presión con H2 y es necesario más volumen de acumulación de gas. La red de gas en España puede admitir ya desde un 6 a 8% de gas natural enriquecido con H2.

En la Hoja de Ruta del Hidrógeno, publicada en el 2021 asigna hasta 2030 inversiones de 8.900M EUR y un compromiso de reducción de emisiones de 4,6 Mton de CO2 a la atmósfera (de 2020 a 2030) que supone un 1% del objetivo total de reducción de emisiones de CO2 para 2030 con respecto a 2017. En las distintas divisiones sectoriales, las acciones se dirigen hacia:

  • Producción: instalación en España de 4 GW de electrolizadores y en el 2024 ya instalados entre 300 y 600 MW. Cerca de lugares de consumo.
  • Sector eléctrico/almacenamiento de energía: proyectos comerciales de H2 para el almacenamiento de electricidad y/o aprovechamiento de la energía renovable excedentaria.
  • Industria: utilización H2 renovable hidrógeno renovable del 25% sobre el total de H2 consumido.
  • Transporte: la Directiva (UE) 2018/2001 establece la cuota de energías renovables en el consumo final de energía en transporte del 14% en 2030. El PNIEyC establece una cuota del 28%:
    • Flota de al menos 150-200 autobuses de pila de combustible de H2 renovable en autobuses urbanos en ciudades de más de 100.000 habitantes.
    • Parque de al menos 5.000-7.500 vehículos ligeros y pesados de pila de combustible de H2 para transporte de mercancías.
    • Red de al menos 100-150 hidrogeneras de acceso público con una distancia máxima de 250 km entre ellas.
    • Ferroviario: trenes propulsados con hidrógeno en al menos dos líneas comerciales de media y larga distancia en vías actualmente no electrificadas.
    • Maquinaria de handling con pilas de combustible de H2 renovable y puntos de suministro en los 5 puertos y aeropuertos.

 AUTOR: Comisión Técnica de FEGECA

 

Para comentar debe estar Registrad@ o REGISTRARSE
RECUPERAR CLAVE
Tu valoración:

Total Votos: 5
1 Participantes
Media: 5,00 / 5
ANPIER. Pensemos a lo grande, hagamos parques pequeños

Relacionadas:

La Fundación Renovables considera al hidrógeno renovable como un complemento a la electrificación de la demanda de energía

Convertir a España en un exportador de hidrógeno supone un error al perpetuar un modelo centralizado y no apostar por la generación distribuida.

La Fundación Renovables considera al hidrógeno renovable como un complemento a la electrificación de la demanda de energía

Hidrógeno: ¿la nueva panacea?

No es tan verde, ni tan económico ni eficiente como nos venden.

Hidrógeno: ¿la nueva panacea?

Embotellado de energía limpia en enlaces químicos

Almacenar hidrógeno puro como gas o líquido es logísticamente difícil, requiriendo grandes tanques de alta presión o temperaturas muy bajas. Los investigadores desarrollan soluciones alternativas para contener hidrógeno en moléculas o materiales.

Embotellado de energía limpia en enlaces químicos


Saber Solar

SL RANK

1-Olympic engineering & consulting 27 2-Solaer coruña 24 3-Tecnifosol 22 4-Zytech solar (fabricante placas solares) 21 5-Aldar s.a. 20 6-Gehrlicher solar españa 20 7-Energia solar sevilla 20 8-Agneus pv 19 9-Ecomesh 18 10-Calpro 18

Mercado eléctrico

0,3743   €/KWh

30/11/2021   09:38 h.

Mercado Fotovoltaico

Anuncios de huertos y cubiertas para instalaciones solares

Entrar